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In this paper,we setup aframeworkof generalizedprequantizationby starting from a
single structureon the principal bundleassociatedwith the Lie grouppair (G, H). This
procedurecould be regardedas a kind of “postulatedrules” takingthe placeof ordinary
prequantization.Illustrativeexampleswhichshowthe usefulnessof ourschemeare, among
others,compactsemisimpleLie groupsandloop groups.The model spacesof loop groups
arealso discussed.
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Introduction

Geometricquantizationin its well establishedform startsfrom asymplectic
manifold (M, w), anda complexline bundleover M (cf. refs. [13, 17]). In
caseof aco-adjointorbit M = G/H, dueto Kirillov’s coorbit theory [6], what
onegetsafterquantizationisa certainrepresentationof G, whichis usuallyonly
onesectorof thequantummechanicalHilbert space.And it is alwaysnon-trivial
to find aglobal form of the connectionwhich meetsthe needof prequantization
[13, 17].

In thispaper,wesetup aframeworkof generalizedprequantizationby starting
from a singlestructureon the principal bundleP associatedwith the Lie group
pair (G, H), whichtakesadvantageof theEhresmannconnectioninducedfrom
the G-actionson P. This procedurecould be regardedas a kind of “postulated
rules” taking the placeof ordinaryprequantization[13, 17].
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Theconditionsunderwhich oursuggestedprocedurecan really be carriedout
aregiven in this paper.Illustrating exampleswhich showthe usefulnessof our
schemeare, amongothers,

1. a shortandtransparenttreatmentof geometricquantizationandthe Borel—
Weil theoremfor compactgroups(otherfinite dimensionalcasescould easily
be foundalsosatisfyingour conditions) (cf. refs. [1, 3, 12])

2. the Borel—Weil theoremfor 1oop groupsLG (M = LG/T) as treatedin
ref. [10],

3. geometricquantizationoftheWess—Zumino—Witten(WZW) model,whose
correctphasespaceshouldbe LG/G insteadof LG/T as most peopleseemto
takefor granted[4, 9—11, 15, 16], and

4. the modelspacesof ioop groupsandthe model spaceof the WZW model
[11].
Actually we believethat all kindsof inducedrepresentationsaresusceptibleto
suchexplanations.

1. Generalizedprequantization on principal bundles over homogeneousspaces

Let G be a Lie group, andH be a closed Lie subgroupof G. Then G can
be identified with aprincipal bundle on the homogeneousspaceG/H of G
(the left cosetspaceof H) taking H as both its fiberand its structuregroup.
The projectionmapping~r : G —* G/H is just the naturalquotientmapping
inducedby H. The left actionsof Gon G inducethe actionsof G on G/H, and
theycommutewith it.

The right actionsof H on Garejust the actionsof the structuregroupH on
the principalbundleiv: G —~ G/H. Thusat eachpoint g of G, weidentify the
Lie algebra7~Iof H with the subspaceof the tangentspaceTg Gas follows:

ag:7(—~TgG, ~F_+rig(~), (1.1)

where rig (~)is thetangentvectorof TgGcorrespondingto the one-parameter
currentg exp( — t~)of G for t ~ R’ [1, 141.

Let g, 7~Ibethe Lie algebrasofthe Lie groupsG, H respectively.Supposethat
thereexists adirect sumdecompositionof ~ which satisfies

g=h~Ei~M, [7-i,M]cM. (1.2)

We define a 1i~-valued one-form c~on Gas

ct(L~)(g)~ —~ for all ~E g, all g E G, (1.3)

whereL~is the left-invariantvectorfield on Gwith L~(e) = ~, and ~ is the 7~-
componentof~underthedecompositionof g in (1.2). Thenc~is anEhresmann
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connectionin the principalbundleit: G —f G/H [141, suchthat

a(a(~))= (1.4)

cs(R~~X)(g)= Adh.1cE(X)(g),

for all ~ ~ 7-1, all h E H, all g E G, andall tangentvectorsX E TgG, wherethe
mappinga is definedin (1.1), Rh denotesthe right actionof h on G, andRh*

is the tangentmappingof Rh. Due to ref. [141, the connectionc~determinesa
horizontalspacedecompositionof TgG for eachg e G as follows:

TgGHgeVg, (1.5)

wherethe verticalspaceVg ~ {ag(c~) ~ ~ 7-1}, and the horizontalspaceHg ~
kerag.

Accordingto ref. [141, the curvatureof the connectionct is definedas a 7-1-
valuedtwo-form Q on Gsuchthat

Q(X,Y)(g) ~da(ivHg(X),mHg(Y))(g) (1.6)

for all g E G, andall tangentvectorsX, Y e TgG, whereHHg: TgG Hg is the
projection.Thenwe have

Q(L~,L~)= [‘~M, 1Ml7t, (1.7)

Q(Rh~X,R~~Y)(g)= Adh.’Q(X, Y)(g),

for all ~, ~ E ~, all h E H, all g ~ G, andall tangentvectorsX, Y E TgG, where
crM denotesthe M-componentof~.

Generallyspeaking,thecurvatureQ on the principalbundleit: G —* G/H is
not the pullbackof a7-1-valuedtwo-form w on G/Hby themappingiv. However,
in the casediscussedbelow,the curvatureQ is really thepullbackof a7-1-valued
two-form w on G/H, which couldbe regardedas the basicstructureof general-
izedprequantizationof theprincipal bundleiv: G —~ G/H (the counterpartof
ordinarysymplecticstructuresof classicalphasespaces).

By theleft actionsof Gon G, andtheinducedactionsof Gon G/H, wedefine
the infinitesimalactionsof ~ on C°°(G) andC°°(G/H), respectively,as

~G(F)(g) ~ ~F(exp(-t~)g)~o,

def
= ~_fojv(exp(_tçe)g)~~..

0, (1.8)

for all ~ e ~, all g E G, all F E C°°(G),andall f e C°°(G/H).
In fact, we canrelate~G/H to ~ with the connectionc~anddetailsaresum-

marizedin the following proposition of generalizedKostant mappingsof the
principal bundle iv: G —p G/H.
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Proposition 1.1 (GeneralizedKostant mappings).Supposethat theLie algebras
g, 7-1 oftheLie groupsG,H satisfy(1.2), andthat

[M, MI cM~Z, (1.9)

7-1——Zey, [7-1,y]cy, (1.10)

whereZ is thecenterofl-1.
We definetwo linear mappingsô0 : ~ —# C°°(G, 7-1) and ÔG/H :

C°°(G/H,Z), respectively,as

ôG(~)(g)~ -(Adg.’~,

~

for all~E g, andalig e G. Then:
(1) ThecurvatureQ ofthe connectioncv definedin (1.6) is the pullbackof a

Z-valuedtwo-formw on G/H, whichsatisfies

w(iv~(L~(g)), iv~(L~(g)))(iv(g)) = [c~M,~)M]z (1.12)

for all çe, ~j E g, andall g E G.

(2) For all~E g, andallg E G,
~G(g) = ~G/H(g) + Lo0(~)(g)

= ~G/H(g)—a(~G(~))(g), (1.13)

dôG/H(~)= i(çe~,~)w, (1.14)

where‘~G/H denotesthe horizontallift ofthevectorfield ‘~G/H on G/H determined
by thehorizontaldecompositionofTgGin (1.5) correspondingto theEhresmann
connectioncv. Dueto theidentity(1.14) it makessenseto call thevectorfield ‘~G/H

on G/H a generalizedHamiltonian vectorfield oföG/H(~) correspondingto w.
(cf refs. [13, 17]). Dueto theidentities(1. 13)and(1.14), wecall themappingsö~,
and ~

5G/HgeneralizedKostant mappingsof the principal bundleiv: G —f G/H
(cf refs. [6, 13, 17]).

The proof is by direct calculation, we omit it.

Corollary 1.2.Supposethat the Lie algebrasg, 7-1 satisfy the conditions in (1.2),
andH is abelian. Then the mappings öG, öG/H definedin (1.12) satisfy

öG(c~)=ôG/H(~~)oiv forall~e~, (1.15)

~G(g) = ~G/H(g) + Lo
0/~(~)olr(g)(g) (116)

=
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Remark. If the Lie algebras ~, N of theLie groups G, H satisfythe conditions
supposedin proposition1.1, thenwe canassociatethe left infinitesimalactions
of g on C°°(G)with their inducedactions of ~ on C°°(G/H)through the
Ehresmannconnectioncv in proposition1.1. This procedureis similar to ordi-
nary prequantizationof a complexline bundle on a symplecticmanifold [13,
17]. However, since the Z-valuedtwo-form w on G/H (correspondingto the
curvatureQ of the connectioncv) in (1.12) maybe degenerate,andthe dimen-
sion of the fiber H of the principal bundleiv: G —f G/H maybelargerthan 1,
wewould like to call thisproceduregeneralizedprequantizationof the principal
bundleGon its homogeneousspaceG/H.

Definition 1.3. (Poisson structureof a subspaceof C°°(G/H,Z), andgener-
alized prequantizationoperators)Assumethat the Lie algebras~, 7-1 satisfy
the conditions (1.2), (1.9) and (1.10). We definea subspaceC~°(G/H,Z)of
C°°(G/H,Z)as

(1.17)

Then
(1) For all ~, ,~iE g, we define the Poisson bracket of two Z-valued smooth

functions ÔG/H(~)andöG/H (ij) as

def
{öG/H(’~), ÔG/H(i7)} = W(17G/H, ‘~G/H), (1.18)

wherew is aZ-valuedtwo-form on G/H definedin (1.12), and~G/H defined
in (1.8) is thegeneralizedHamiltonianvectorfield of ÔG/H(~)which satisfies
(1.14).

(2) For all prequantization operators ~G/H (~)on ~ (G) as

ÔG/H(~)~~G/H + LoG(~)= ~G, (1.19)

wherec~is definedin (1.8),óG(~)in (1.11),and~G/H is the horizontallift of
~G/H.

Theorem 1.4.Suppose that the Lie algebras g, N ofthe Lie groupsG, H satisfy
theconditions(1.2), (1.9) and(1.10). Then:

(1)for all ~ E G,

{ôG/H(c~), öG/HO7)} = ~GIH([’~, n]); (1.20)

moreover, theLie algebra (C~°(G/H, 2), { , }) is Lie-isomorphic to ~

(2) thegeneralizedprequantizationmappingQ : öG/H (~)~ ~G/H (~)is a Lie
homomorphism from (C~’°(G/H, Z), { , }) to the spaceoflinear differential
operatorson C°°(G).
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Proof
(1) By (1.10), it is impliedthat

[N, NI cy. (1.21)

Thenit follows from (1.2) and (1.21)that the identity

[~, ‘lIz = [~M, ?1MIZ (1.22)

holdsfor all ~, ,~eç. Since

{öG/H(~),~G/H(’l)}(it(g))

= W(’lG/H, ~G/H)(7r(g))

= w(—iv~(L(Adg.~1fl)~(g)), it~(L(Adg._I~)~(g)))

= [(Adg.”l)~, (Adg.’~)M]z

= [Adg.’,~, Adg.~Iz

= (—Adg.’[~, ‘l])z

= ôG/JJ([~~,p1),

it follows that the identity (1.20) holdsfor all ~~‘ie ~. Moreover, (C~(G/H,
2), { , }) is aLie algebra,andthe mappingy, : ‘—p ôG/H(~) is a Lie isomor-
phismfrom g to C~(G/H,Z).

(2)Since~ is the representationof ~ on C°°(G), it follows from (1 .19)
and (1.20)that the mappingQ is a Lie homomorphism. E

Remark.Our generalizedprequantizationis just the representationof g on

COC (G) by (1.19). Definition 1.3 andtheorem1.4 showthat our generalized
prequantizationschemeis similar to the ordinaryprequantizationscheme[13,
171 in the definitions and properties of the Poisson bracket and prequantization
operators.Sincethe2-valuedtwo-formw on G/H maybedegenerate,thePois-
sonbracketandgeneralizedprequantizationoperatorsin ourschemeareonly
definedin asubspaceC0

0°(G/H, 2) of C~(G/H, 2), which is not an algebra.
An interestingquestionis how to extendthe definitionsof the Poissonbracket
andgeneralizedprequantizationoperatorsto alinear spacewhich is largerthan
C~(G/H, 2), is aPoissonalgebra,andguaranteesaresult similar to theorem
1.4(2).

The following section is motivated by the question whether there exist some
illustrative examples of the Lie group pairs (G, H), whose Lie algebras g, N
satisfy the conditions (1.2), (1.9) and (1.10) supposed in proposition 1.1. The
answertothisquestionisactuallypositive.In fact, thedimensionsoftheinterest-
ing examplesrangefrom finite dimensionsto infinite dimensions.In particular,
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applyingthis methodto loop groups [9, 101, we makecontributionsto the ge-
ometricquantizationof the Wess—Zumino—Wittenmodel in two-dimensional
conformalfield theory (cf. refs. [11, 161).

2. Applicationsof generalizedprequantization

2.1. COMPACT SEMISIMPLELIE GROUPS

Let G be a compact semisimpleLie group, and T be the maximaltorus of G.
It is easy to see that the principal bundle iv: G —f G/H satisfiesthe conditions
supposed in theorem 1.2. In fact, due to Adams [11, the Lie algebras ~, Y of
G, T satisfy

=

[T, TI = {0}, (2.1)

[‘T, MI =

[M, MI c M~T,

where

M ‘~ span{(efl — e_~),i(ep + e_p) I /3 is a positive root of cc,

andep, e_p arethe rootvectorsof Gc
correspondingto the roots /3 and — /3}.

We seethat the connection(1.2), (1.9) and (1 . 10) aresatisfied,thusthe con-
nection cv andgeneralizedKostant mappingsof this principal bundlecan be
obtainedthroughproposition1.1. Moreover, since (2.1) makethe conditions
in corollary 1.3 satisfied,generalizedKostantmappingsareonly determinedby
the linearmappingöG/T : ~ —~ C°°(G/T,T), i.e.,

= —(Adg.’~)j

for all g e G, andall ~eg.
If ,~is a weightof G, thenwe obtainthe inducedcomplexline bundleC

LA —.--~ G/T equippedwith the inducedconnectionV(A) and inducedKostant
mapping.It implies that the line bundleL2 is a “generalized”prequantization
line bundleon G/ T, wherethe word “generalized”meansthatthe curvaturew1
of the inducedconnectionmaynot bea symplecticform on G/T.

We choosethe KãhlerianpolarizationP on G/T [13, 17] as

P(it(g))~{it~(L~(g)) I~~V+}, (2.2)

whereA
1÷is the positiveroot vectorsubspaceof cc. The polarizationspace

I~f(LA) ~ {F E F(L
2) I V~~(g))F(g)= 0 (2.3)

for all tangentvectorsX(iv(g)) E P(iv(g))},



M. Guo et al. / Generalizedprequantizationonprincipal bundles 131

where F (LA) is the smoothsectionspaceof the complexline bundleLA, which
can be identified with the following subspace of the smooth function space of G:

F(LA) ~ {F E Cc~o(G)I F(gt) = )~‘(t)F(g)fora1lt e T, allg e G}. (2.4)

In fact, the polarizationspaceI~”(LA) is just the holomorphicsectionspaceI~.
of the holomorphicline bundle iv: LA —~ Gc/B+, whereB+ denotesthe Borel
subgroupof G~correspondingto the positiveroots of cc. The properties of the
spaceI~are elucidatedby the most famousBorel—Weil theoremfor compact
groups.

Theorem 2.1 (Borel—Weil theorem of compact groups [1, 3, 91).
(1) Theholomorphicline bundleLA has nonzeroholomorphicsectionsif and

only if the weight ~. of G is the antidominant weight of G.
(2) If)L is theantidominantweightofG, thentheholomorphicsectionspaceI~

ofthe holomorphicline bundleLA is the irreducibleunitary representationspace
ofGwith the lowestweight)~.

Remark. The argumentsaboveshowthat the irreducibleunitary representation
of Gcanbeobtainedthroughourgeneralizedgeometricquantizationofthe com-
plex homogeneousspaceG/T of G. Proposition1.1 andcorollary1.2imply that
the inducedKostant mappingmakesthe inducedrepresentationof Gcoincide
with the geometricquantizationof G/ T. For moredetailsof the calculationin
the caseof compactgroups,pleaserefer to refs. [6, 121.

2.2. LOOP GROUPSAND THEIR CENTRAL EXTENSIONS

SupposethatGis aconnected,simplyconnectedandcompactsemisimpleLie
group. Let LG bethe 1oop groupof G, andLG be the centralextensionof LG
determined by the basic two-cocycle w of LG in ref. [91.

LG can be regardedas the different principal bundles on its different ho-
mogeneousspaces.In this paper, we would like to discussthe following two
fundamental homogeneous spaces [101:

1. LG/T: the principalbundleT x T —f LG —~ LG/T, whereT, T denote
the centerof LG, and the maximaltorusof G, respectively.

2. LG/G: the principal bundleT x G —* LG —~ .QG, where .QG is the
subgroupof LG whoseelementy satisfiesthat y (1) = e where 1 e S1, ande is
the unit elementof G. In fact, QG ~ LG/G.

2.2.1. The principal bundle iv : —~ LG/T. By the structureof the Lie
algebraLc of LG, it follows directly thattheprincipalbundleTx T —f LG
LG/T satisfies the conditionssupposedin proposition 1.1 andcorollary 1.2.
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Then this principal bundle iv : LG —~ LG/T canbeequippedwith the structures
of the connectioncv, andgeneralizedKostantmappingöLG/T.

If A is a weightof LG [91,thenwe caninduceacomplexline bundleC
LA —f LG/T on LG/T from this principal bundle,and imposethe induced
connectionand inducedKostant mappingon the complexline bundle.Thus
weregardLA as ageneralizedprequantizationline bundleon LG/T. Moreover,
by the generaltheory of Pressleyand Segal [101, the fundamentalhomoge-
neousspaceLG/T can be identified with a homogeneouscomplexmanifold
LGc/B+Ge, whereB+ G~consistsof theboundaryvaluesof holomorphicmaps

y : {z : IzI < 1} Ge

such that y(0) belongsto the Borel subgroupB~of Ge correspondingto the
positiveroots of cc.

As in the caseof compactgroups,we choosethe polarizationP determined
by the Lie subalgebraN~Gcof Lcc, which consistsof the boundaryvaluesof
holomorphicmaps

~: {z: IzI < l} cc
suchthat~(0) belongsto the nilpotent Lie subalgebra.jV + of cc corresponding
to the positiverootsof cc. By thecomplexstructureof LG/T, it follows thatthe
polarizationspace

~ {F E F(LA) I V~(7))F(y)= 0 for ally E LG,
andall tangentvectorsX (iv (y)) E P(iv (y) ) }

is just the holomorphicsectionspacelj of the holomorphicline bundleLA on
the homogeneouscomplex manifold LG/T (~ LGc/B~Ge). Being similar
to compactgroups,the Borel—Weil theorem for ioop groups [101 completely
describesthe spaceIj.

Theorem2.2 (Borel—Weil theoremfor loop groups[101).
(1) The holomorphic line bundleLA on the homogeneouscomplexmanifold

LG/Tpossessesnon-vanishingholomorphicsectionsif andonly if theweightA of
LG is antidominant.

(2) If therepresentationIj is nonzero,thenthe representationis:
(i) ofpositiveenergy,
(ii) offinite type,
(iii) essentiallyunitary, and
(iv) irreducible, with lowestweightA.

Remark. The Borel—Weil theorem of loop groupsandinducedKostantmapping
alsoidentify the inducedrepresentationof LG on 1j with the generalizedgeo-
metric quantizationof its infinite dimensionalhomogeneouscomplexmanifold
LG/T ~ LGc/B~Gc.
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2.2.2. Theprincipal bundleiv : JLG —+ LG/G(~ QG). The Wess—Zumino—
Witten modelwith thegaugegroupGplaysanimportantrole in two dimensional
conformalfield theory [2, 4, 16]. Following from the discussionsin refs. [11]
and [161,the classicalphasespaceof theWZWmodel is QGxQG. Sincetheleft
copy and the right copy of QG in thisclassicalphasespacearehomeomorphic,
it is enoughto investigatethe geometricquantizationof QG. Moreover, the
geometric quantization of the classical phase space QGx QG is just the direct
sum of the geometric quantizations of the two copiesof QG [161.

With the abovearguments,it is naturalto takethe principalbundleTx G
LG —p QGas thestartingpointof thegeometricquantizationofQG. It follows
that this principal bundlesatisfiesthe conditions (1.2), (1.9), and (1.10). By
proposition1.1, we obtainan EhresmannconnectionandgeneralizedKostant
mappings.

If A = (0, 2, h) is an antidominantweightof JiG [10], wherethe level h (a
positiveinteger)isthe characterofthe centerTof LG, then2 isan antidominant
weightof G. By theorem2.1 (Borel—Weil theoremfor compactgroups),there
exists one and only one irreducible unitary representation(VA, PA) with the
lowest weight2, wherethe representationspaceVA is the holomorphicsection
spaceI~oftheinducedholomorphiclinebundleLA on thehomogeneouscomplex
manifold G/T. With A, andthe irreduciblerepresentation(1’~,PA) of G, the
complexvectorbundleVA —~ ~ —i QG canbe inducedfrom the principal
bundleT x G —b LG —~ QG. Thenwe canalso imposethe structuresof the
inducedconnectionandinducedgeneralizedKostantmappingson thiscomplex
vectorbundle.Thus we regardthe complexvectorbundleEf) equippedwith
the structuresstatedaboveas the prequantizationvectorbundleof QG.

In order to obtainthe polarizationof the prequantizationvector bundleof
QG, we first briefly investigatethe structureof the homogeneousspaceQG ~
LG/G. As weknow from ref. [10], QG canbeidentified with ahomogeneous
complexmanifoldLGc/L+G~,whereL+ Ge consistsof the boundaryvaluesof
the holomorphicmaps

y: {z: IzI < l} Ge.

Moreover,QG is a Kähler manifold whoseKähler form is just the basictwo-
cocyclew of LG [9].

Now we choosethe polarizationP of QG as

P(,v(y))~f{iv~(L~)) ~EL~cc} (2.5)

for all y eLG, wherethe Lie subalgebraL~cc of Lcc consistsof the boundary
valuesof holomorphicmaps

~: {z: IzI < l} cc



134 M. Guo eta!. / Generalizedprequantizationon principal bundles

suchthat~(0) = 0. The polarizationspaceis definedas

p
0P (EA(r)) ¶~{ FE F(E~”~)I Vx(fl(A))F(y) = 0 for all (2.6)

yE LG, andall tangentvectorsX(iv(y)) e

whereF (Er) denotesthesmoothsectionspaceof thevectorbundleE.~T),which
can be identifiedwith the following subspaceof C~(LG, VA):

F(E~T))~ { FE C~(LG,VA) I
F(yt) = A(t)’F(y), F(yg) = p~(g).’F(y) (2.7)

for all y E LG, all t E T, and all g e G}.

Lemma 2.3 (The explicit form ofF0”(E~)).SupposethatA(=(0, 2, h)) isan

antidominantweightoftG. Let (VA, PA) betheirreducibleunitary representation
ofGe inducedby the antidominantweight1 ofG in theorem2.1. We extendPA

as thehomomorphismPA from L~Gcx C’< to Hom(VA, VA), which satisfies

PAIL~+GC = 1, PAle>’ = h, PAIGc = PA, (2.8)

wherec>< denotesthe complexificationof the centerT of LG,andthe subgroup
L~GeofLGc consistsoftheboundaryoftheholomorphicmaps

y: {z: IzI < l} ‘Gc

suchthaty(0) = e~G.
WedefineEA asthe inducedholomorphicvectorbundlefromthecomplexprin-

cipal bundle

L~Gcx CX LGc —* QG(~LGc/L~Gc)

by the extendedhomomorphismPA: L~Gex CX Hom(VA, 13,).
ThenthepolarizationspaceF0” (Er) oftheprequantizationvectorbundleEj~

is just the holomorphicsectionspaceFhOl (EA) ofthe holomorphicvectorbundle
VA_-~EA_*QGonQG.

Proof

(1) Since for all F E 17f(E~),all ~ E L~ce,and ally E LG, by (2.6),

0 = Vr(L(y))(F)(Y) = L~(F)(y) = ~F(yexpt~)~~o,

it follows thatF(yb) = F(y) for all b E ~ This impliesthatF E Fh01(EA),

i.e., FO”(EA~”~)ç FhOJ(EA).
(2) By the complex structure of QG, and the definition of the polarization

space17!(E~T))in (2.6), it follows directly that FhOJ(EA) c

It follows from (1) and (2) abovethat the identity F�r(E~) = FhOI(EA)

holds. E
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Remark. Lemma 2.3 showsthatgeneralizedgeometricquantizationspaceofQG
is the holomorphicsectionspaceFh01 (EA) of theholomorphicvectorbundleEA
of QG. The questionwhetherFh01(EA) is non-zeroor not needsto be answered.
The positiveanswerto this questionis similar to the Borel—Weil theoremfor
loopgroups(theorem2.2).

Lemma 2.4 (Themodelspaceof G [5, 7, 11]). Supposethat G is a compact
semisimpleLie group. We definethe modelspaceA of G as the homogeneous
complexmanifoldGe/Nt whereN+ is the maximalnilpotentsubgroupof G
correspondingto thepositiveroot vectorsofthecomplexifiedLiealgebraccofG.
Then the holomorphic function spaceHol (A) ofA as the representationspaceof
G can be decomposed into the direct sum ofthe irreducible representationspaces
of G in which each irreducible representationappearsonceandonly once.

Proof Let T be the maximal torus of G. Since TN~= N~T, T has the right
actions on the model space A of G. It follows that the right actionsof T on
A commute with the left actions of G on A. Since T is abelian,Hol(A) can
bedecomposedinto the direct sum~A HA, whereHA denotes the weight space
correspondingto the character2 of T. In particular,HA is invariant underthe
inducedactionsof Gon Hol(A).

In fact, HA is just the holomorphicsectionspaceI~,of the induced holomor-
phicline bundleLA of G/T. By theorem2.1 (Borel—Weil theoremfor compact
groups), HA is the irreduciblerepresentationspaceof G with 2 as the lowest
weight. It is obviousthat I~c Hol(A) for eachantidominantweight2 of G.
Thus each irreducible representation appears once and only once in the direct
sum decomposition of Hol (A).

Remark.
(1) Lemma2.4statesthatall irreduciblerepresentationsof Gcanbenaturally

combinedinto the holomorphicfunctionspaceHol (A) of the model space A.
Thisis justthereasonwhythehomogeneouscomplexmanifoldA( def Gc/N+)
is calledthe modelspaceof G.

(2) This lemmais quite differentfrom the Peter—Weyltheorem.ThePeter—
Weyl theoremshowsthat L

2 (G) (the squareintegrablefunction spaceof G)
as the representationspaceof G canbedecomposedinto the direct sumof the
irreducible representation spaces of G, and each irreducible representation VA
appears (dim VA) times. ThePeter—Weyltheoremfor compactgroupscannotbe
generalized to the case of infinite dimensional Lie groups.

Theorem 2.5.IfA(= (0, 1, h)) is the antidominantweight ofLG, then there
existsa linear isomorphism

~‘:Jj—~ Fh
01(EA),
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whereIj denotesthe holomorphicsectionspaceofthe holomorphicline bundle
LA on LG/T in theorem2.2. Moreover,FhOI(EA) is theirreducible representation
ofLG with thelowest weightA.

Proof In the proof of lemma 2.2, the space

HA {fEHol(Gc/N+)If([gt])_2(tY~f([g]) (29)
for all g E Gc, and all t E Tc}

is just the holomorphicsectionspaceI~, of the holomorphicline bundleLA on
G/T in theorem2.1. ThuswetakeHA as VA in lemma 2.3. It alsofollows directly
that the following identitieshold:

FA ~ { f E Hol(LGc/N~Ge)I f([yt]) = A(tY1f([yI) (2 10)
forallyELG, andalltE Te xC><},

FhoI(EA) ~ { f E HOl(LGe/Lj~Gc,VA) I f([yg]) = p~(g).’f([y])
for ally E LGe, and all g E Ge X CX}

~ { f ~Hol(LGe/L~Gc,Hol(Gc/N~))I
f([yg], [g’]) = f([y], [gg’Il),
f( [yt], [g]) = A(t)’f([y], [g])
forally ELGc, allg,g’e Ge, andalltE Te xC><}.

(2.11)
Wedefine the linear map

ç~:1j—4F~
0l(EA),f~-~c’(f),

~(f)([y], [g]) ~ f([yg]) forall~ELGe, allgEGc. (2.12)

By theidentities (2.10) and (2. 11), it implies that q is a linear isomorphism.
SinceA is an antidominantweightof LG, it follows from theorem2.2 that TA is
the irreduciblerepresentationof LG with the lowestweightA. Thus Fh01 (EA) is
alsothe irreduciblerepresentationof .LG with the lowestweightA of LG. ~

Remark. The induced irreduciblerepresentationof LG on FhOl (EA) coincides
with the generalizedgeometricquantizationofQG by theorem2.5, andinduced
Kostant mappings.

Theorem 2.6 (The model spaces of LG [11]). We definetwo spacesA1 andA2
ofLG as

A1 ~LGe/N~Ge, A2~LGc/L~Ge, (2.13)

respectively.Then:
(1) the holomorphicfunction spaceHol (A1) of A1 can be decomposedinto

thedirect sumofthe irreducible representationsofLG in which each irreducible
representationappearsonceandonly once.
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(2) Wedefinea linearspaceas

NA
2 ~ {Hol(LGe/L~Ge,Ho1(Ge/N~))I f([yg], [g’]) f([y], {gg’])

for all y E LGe, all g, g’ E Ge}.
(2.14)

Thenthereexistsa linear isomorphism~,: Hol (Ai) —~ N~,2,which is definedin
(2.12). Moreover, NA2 canbe decomposedinto the direct sum of the irreducible
representationsofLG in whicheachirreduciblerepresentationappearsonlyonce.

Proof
(1) Similar to the proof of lemma2.4, it follows directly from theorem2.2

(Borel—Weil theorem for loop groups) that the statement about Hol(A1) is true.
(2) By lemma2.4,Hol(Ge/N~)= ~A VA, whereVA is the irreduciblerepresen-

tationof Gwith the lowestweight2of G, and2 runsoverthesetof antidominant
weightsof G. Sincethe following identity

f([yg]) = p(g).”f([y]) (2.15)

holds for all f ~N~2,all y E LGe, andall g E Ge, wherep is the representation
of G~on Hol(Ge/N~)inducedby the left actionsof Ge on Ge/N~,the space
NA2 can be decomposed into the direct sum~A7-~A2, where

N~= {fEHol(LGc/Lj~Ge,VA)If([yg]) =p~(g).~’f([yI) (216)
for all y E LGe, and all g E Ge}

and 2 runs over all antidominant weights of G.
By the fact that the center T of LG commutes with L~Ge, the center T has

right actions on the model space A2 = LGc/L~Ge. Thus the space N~under

the right actionsof T can be decomposedinto the direct sum~hN~ h) where

the positive integer h is the characterof T, and ~ h) is the corresponding

characteristicspaceof T. In fact, the spaceN~h) can be identified with the
holomorphicsectionspaceFhOl (EA) oftheholomorphicvectorbundleEA defined
in lemma2.3 by the weightA of LG. By theorem 2.5, ~ h) is nonzeroif and
only if A is an antidominantweight. And on the otherhand, if A( = (0, 2, h))

is an antidominantweight, thenit is easyto seethat

FhOl(EA) = N~h) C ~ C NA2.

Thus N42 can be decomposed into the direct sum of the irreducible representa-
tions of LG in which eachirreduciblerepresentationappearsonly once.

By the definition of ~ in (2.15), it follows that q is a linear isomorphism.
Moreover, the statementaboutN42 in theorem2.6(2) can also be proved by
theorem2.6(1) throughthe linear isomorphismço. Li
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Remark.Theorem2.6 showsthat the modelspacesA1 andA2 both can combine
the irreduciblerepresentationsof LG into a global structuresuchas Hol(A1)
andNA2.
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