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In this paper, we set up a framework of generalized prequantization by starting from a
single structure on the principal bundle associated with the Lie group pair (G, H). This
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Introduction

Geometric quantization in its well established form starts from a symplectic
manifold (M, w), and a complex line bundle over M (cf. refs. [13, 17]). In
case of a co-adjoint orbit M = G/H, due to Kirillov’s coorbit theory [6], what
one gets after quantization is a certain representation of G, which is usually only
one sector of the quantum mechanical Hilbert space. And it is always non-trivial
to find a global form of the connection which meets the need of prequantization
[13, 17].

In this paper, we set up a framework of generalized prequantization by starting
from a single structure on the principal bundle P associated with the Lie group
pair (G, H), which takes advantage of the Ehresmann connection induced from
the G-actions on P. This procedure could be regarded as a kind of “postulated
rules” taking the place of ordinary prequantization [13, 17].
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The conditions under which our suggested procedure can really be carried out
are given in this paper. Illustrating examples which show the usefulness of our
scheme are, among others,

1. a short and transparent treatment of geometric quantization and the Borel-
Weil theorem for compact groups (other finite dimensional cases could easily
be found also satisfying our conditions) {cf. refs. [1, 3, 12])

2. the Borel-Weil theorem for loop groups LG (M = LG/T) as treated in
ref. [10],

3. geometric quantization of the Wess-Zumino-Witten (WZW) model, whose
correct phase space should be LG/G instead of LG/ T as most people seem to
take for granted [4, 9-11, 15, 16], and

4. the model spaces of loop groups and the model space of the WZW model
[11].

Actually we believe that all kinds of induced representations are susceptible to
such explanations.

1. Generalized prequantization on principal bundles over homogeneous spaces

Let G be a Lie group, and H be a closed Lie subgroup of G. Then G can
be identified with a principal bundle on the homogeneous space G/H of G
(the left coset space of H) taking H as both its fiber and its structure group.
The projection mapping # : G — G/H 1is just the natural quotient mapping
induced by H. The left actions of G on G induce the actions of G on G/H, and
they commute with 7.

The right actions of H on G are just the actions of the structure group H on
the principal bundle = : G — G/H. Thus at each point g of G, we identify the
Lie algebra H of H with the subspace of the tangent space T, G as follows:

og:H— TG, —0,(), (1.1)

where g, () is the tangent vector of T,G corresponding to the one-parameter
current gexp(—t&) of G for t € R! [1, 14].

Let G, H be the Lie algebras of the Lie groups G, H respectively. Suppose that
there exists a direct sum decomposition of G which satisfies

G=HsM, [H, M] C M. (1.2)
We define a H-valued one-form « on G as
a(L:)(g) ¥ & foralléeg, allgeg, (1.3)

where L; is the left-invariant vector field on G with L; (¢) = £, and &y is the H-
component of £ under the decomposition of G in (1.2). Then « is an Ehresmann
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connection in the principal bundle 7 : G — G/H [14], such that

a(o(f)) = ¢,
a(Ry, X)(g) = Adh."'a(X)(g),

(1.4)

forall{ € H,all h € H, all g € G, and all tangent vectors X € T,G, where the
mapping o is defined in (1.1), R, denotes the right action of 4 on G, and Ry,
is the tangent mapping of R;,. Due to ref. [14], the connection « determines a
horizontal space decomposition of T, G for each g € G as follows:
T,G=HzaV,, (1.5)

where the vertical space V, &f {og(&) | £ € H}, and the horizontal space H &ef
ker ag.

According to ref. [14], the curvature of the connection « is defined as a H-
valued two-form £ on G such that

QX,Y)(g) ¥ dalry, (X),m, (Y))(g) (1.6)

for all g € G, and all tangent vectors X, Y € T, G, where Ily,: T,G — Hy is the
projection. Then we have

Q(Léa LV]) = [éM’ nM]H:

(1.7)
Q(Rp, X, Ry Y)(g) = Adh.7'Q(X, Y)(g),

forallf, n € G,all h € H, all g € G, and all tangent vectors X, Y € TG, where
¢ denotes the M-component of &,

Generally speaking, the curvature €2 on the principal bundle z : G — G/H is
not the pullback of a H-valued two-form w on G/H by the mapping 7. However,
in the case discussed below, the curvature £ is really the pullback of a H-valued
two-form w on G/H, which could be regarded as the basic structure of general-
1zed prequantization of the principal bundle 7 : G — G/H (the counterpart of
ordinary symplectic structures of classical phase spaces).

By the left actions of G on G, and the induced actions of G on G/H, we define
the infinitesimal actions of G on C*°(G) and C*(G/H ), respectively, as

o (F)(g) & %F(exp(—ti)g)h:o,

o () (n(g)) & a‘ltf o m(exp(—1€) &)]iz0, (1.8)

forallé € G,all g e G,all F € C~(G),and all f € C>*(G/H).
In fact, we can relate &,y to g with the connection a and details are sum-

marized in the following proposition of generalized Kostant mappings of the
principal bundle 7 : G — G/ H.



M. Guo et al. / Generalized prequantization on principal bundles 127

Proposition 1.1 (Generalized Kostant mappings). Suppose that the Lie algebras
G, M of the Lie groups G, H satisfy (1.2), and that

M, M]CMe Z, (1.9)
H=Z9), H, Y]ICY, (1.10)

where Z is the center of H.
We define two linear mappings 6 : G — C*(G, H) and 6/ : G —
C>*(G/H, Z), respectively, as
56(8)(8) & —(Adg. "¢,
doin (&) (m(g)) £ —(Adg. ")z,
forallé € G, and all g € G. Then:
(1) The curvature 2 of the connection o defined in (1.6) is the pullback of a
Z-valued two-form w on G/H, which satisfies
(e (Le(g)), mu(Ly(8)))(n(8)) = [Errnm] 2z (1.12)

forallé, ne g, andall g € G.
(2) Forall¢ € G, and all g € G,

(1.11)

Ec(g) = & n(g) + Lsye)(8)
& (g) —a(36(&))(g), (1.13)
ddg/n (€) = 1(Co/n)w, (1.14)

where &g /1 denotes the horizontal lift of the vector field {g,iy on G/ H determined
by the horizontal decomposition of T¢G in (1.5) corresponding to the Ehresmann
connection o.. Due to the identity (1.14) it makes sense to call the vector field £ n
on G/H a generalized Hamiltonian vector field of 6,1 (&) corresponding to w.
(cf. refs. [13, 17]). Due to the identities (1.13) and (1. 14), we call the mappings g,
and oy generalized Kostant mappings of the principal bundle n : G — G/H
(cf refs. [6, 13, 17]).

The proof is by direct calculation, we omit it.

Corollary 1.2. Suppose that the Lie algebras G, H satisfy the conditions in (1.2),
and H is abelian. Then the mappings d¢, g, defined in (1.12) satisfy

06(§) = og/u({)om foralléeg, (1.15)

$e(g) = EG/H(g) + Lsgrong) (8)

. (1.16)
= Co/u(g) — 0o (0g/u (&) (n(g))(g).
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Remark. If the Lie algebras G, H of the Lie groups G, H satisfy the conditions
supposed in proposition 1.1, then we can associate the left infinitesimal actions
of G on C>(G) with their induced actions of G on C*(G/H) through the
Ehresmann connection « in proposition 1.1. This procedure is similar to ordi-
nary prequantization of a complex line bundle on a symplectic manifold [13,
17]. However, since the Z-valued two-form w on G/H (corresponding to the
curvature 2 of the connection a) in (1.12) may be degenerate, and the dimen-
sion of the fiber H of the principal bundle 7 : G — G/H may be larger than 1,
we would like to call this procedure generalized prequantization of the principal
bundle G on its homogeneous space G/H.

Definition 1.3. (Poisson structure of a subspace of C*°(G/H, Z), and gener-
alized prequantization operators) Assume that the Lie algebras G, H satisfy
the conditions (1.2), (1.9) and (1.10). We define a subspace Cg°(G/H, Z) of
C>*(G/H,Z) as
CE(GIH, 2) € {d6,u (&) | £ € G). (1.17)

Then

(1) For all &,n € G, we define the Poisson bracket of two Z-valued smooth
functions g,y (§) and dg/y (n) as

{06/u (&), dg/u(n)} ‘i—ifw(ﬂG/H, E6/H)> (1.18)

where w is a Z-valued two-form on G/H defined in (1.12), and &g/ defined
in (1.8) is the generalized Hamiltonian vector field of dg,y (&) which satisfies
(1.14).

(2) For all prequantization operators Sg/ (&) on C>(G) as

b6/ (&) ¥ & /n + Loy = Eao (1.19)

where &g is defined in (1.8), dg(&) in (1.11), and EG/H is the horizontal lift of
¢6/H.

Thedrem 1.4. Suppose that the Lie algebras G,’H of the Lie groups G, H satisfy
the conditions (1.2), (1.9) and (1.10). Then:
(1) forallé,n e g,

{06/1 (&), d6/u(n)} = d6/u([&, n1); (1.20)

moreover, the Lie algebra (C*(G/H, 2),{ , }) is Lie-isomorphic to G;

(2) the generalized prequantization mapping Q : g,y (§) — 30/1{(5) is a Lie
homomorphism from (CP(G/H, Z),{ , }) to the space of linear differential
operators on C* (G).



M. Guo et al. / Generalized prequantization on principal bundles 129

Proof.
(1) By (1.10), it is implied that

[H, H] € ). (1.21)
Then it follows from (1.2) and (1.21) that the identity

(& nlz = Em nmlz (1.22)
holds for all £, n € G. Since

{06/u (&), d/a(n)}(m(g))

= w(Me/n, So/) (m(g))

= O(-7(Ladg-1m) . (8))s —7u(Liadg16),,(£)))

= [(Adg. ' um, (Adg. 'O mlz

= [Adg.7'n, Adg.7Y¢]z

= (-Adg.”'[¢ 1))z
Sa/m ([& 1),
it follows that the identity (1.20) holds for all £,n € G. Moreover, (C&(G/H,
Z),{ ., }) is a Lie algebra, and the mapping y : { — dg/y (&) is a Lie isomor-
phism from G to Cg°(G/H, Z).

(2) Since &g is the representation of G on C*°(G), it follows from (1.19)
and (1.20) that the mapping Q is a Lie homomorphism. O

Remark. Our generalized prequantization is just the representation of G on
C>®(G) by (1.19). Definition 1.3 and theorem 1.4 show that our generalized
prequantization scheme is similar to the ordinary prequantization scheme [13,
17] in the definitions and properties of the Poisson bracket and prequantization
operators. Since the Z-valued two-form w on G/H may be degenerate, the Pois-
son bracket and generalized prequantization operators in our scheme are only
defined in a subspace CF(G/H, Z) of C*(G/H, Z), which is not an algebra.
An interesting question is how to extend the definitions of the Poisson bracket
and generalized prequantization operators to a linear space which is larger than
Ce°(G/H, Z), is a Poisson algebra, and guarantees a result similar to theorem
1.4(2).

The following section is motivated by the question whether there exist some
illustrative examples of the Lie group pairs (G, H), whose Lie algebras G, H
satisfy the conditions (1.2), (1.9) and (1.10) supposed in proposition 1.1. The
answer to this question is actually positive. In fact, the dimensions of the interest-
ing examples range from finite dimensions to infinite dimensions. In particular,
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applying this method to loop groups [9, 10], we make contributions to the ge-
ometric quantization of the Wess—Zumino—Witten model in two-dimensional
conformal field theory (cf. refs. [11, 16]).

2. Applications of generalized prequantization

2.1. COMPACT SEMISIMPLE LIE GROUPS

Let G be a compact semisimple Lie group, and T be the maximal torus of G.
It is easy to see that the principal bundle n : G — G/ H satisfies the conditions
supposed in theorem 1.2. In fact, due to Adams [1], the Lie algebras G, 7 of
G, T satisfy

g = TGBM:
(T, T] = {0}, 2.1
[T, M] = M, '

M, M] C MaT,
where

M o span{(eg —e_g), i(eg + e_p) | B is a positive root of Ge,
and eg, e_p are the root vectors of G¢
corresponding to the roots f and — f}.

We see that the connection (1.2), (1.9) and (1.10) are satisfied, thus the con-
nection « and generalized Kostant mappings of this principal bundle can be
obtained through proposition 1.1. Moreover, since (2.1) make the conditions
in corollary 1.3 satisfied, generalized Kostant mappings are only determined by
the linear mapping ég;r : ¢ — C*(G/T, T), i.e,

9T (&) (g) = —(Adg. 787

forall g € G,and all ¢ € G.

If A is a weight of G, then we obtain the induced complex line bundle C —
L, ~— G/T equipped with the induced connection V) and induced Kostant
mapping. It implies that the line bundle L, is a “generalized” prequantization
line bundle on G/T, where the word “generalized” means that the curvature w;
of the induced connection may not be a symplectic form on G/T.

We choose the Kihlerian polarization P on G/7 [13,17] as

P(r(g)) & {m.(Le(g)) | E€NLY, (2.2)

where NV, is the positive root vector subspace of Gc. The polarization space

IF (L) € (F el (L) |V, ) F(g) =0

2.3
for all tangent vectors X (n(g)) € P(n(g))}, (23)



M. Guo et al. / Generalized prequantization on principal bundles 131

where I'(L;) is the smooth section space of the complex line bundle L;, which
can be identified with the following subspace of the smooth function space of G:

F(L;) = {FeC®(G)|F(gt) =i~ (1)F(g)forallte T, allg € G}. (2.4)

In fact, the polarization space FOP (L;) is just the holomorphic section space [}
of the holomorphic line bundle n : L; — G¢/B*, where B* denotes the Borel
subgroup of G¢ corresponding to the positive roots of G¢. The properties of the
space I, are elucidated by the most famous Borel-Weil theorem for compact
groups.

Theorem 2.1 (Borel-Weil theorem of compact groups [1, 3, 9]).

(1) The holomorphic line bundle L, has nonzero holomorphic sections if and
only if the weight A of G is the antidominant weight of G.

(2) If A is the antidominant weight of G, then the holomorphic section space I}
of the holomorphic line bundle L, is the irreducible unitary representation space
of G with the lowest weight A.

Remark. The arguments above show that the irreducible unitary representation
of G can be obtained through our generalized geometric quantization of the com-
plex homogeneous space G/T of G. Proposition 1.1 and corollary 1.2 imply that
the induced Kostant mapping makes the induced representation of G coincide
with the geometric quantization of G/7. For more details of the calculation in
the case of compact groups, please refer to refs. [6, 12].

2.2. LOOP GROUPS AND THEIR CENTRAL EXTENSIONS

Suppose that G is a connected, simply connected and compact semisimple Lie
group. Let LG be the loop group of G, and LG be the central extension of LG
determined by the basic two-cocycle w of LG in ref. [9].

LG can be regarded as the different principal bundles on its different ho-
mogeneous spaces. In this paper, we would like to discuss the following two
fundamental homogeneous spaces [10]:

1. LG/T: the principal bundle 7 x T — LG — LG/T, where T, T denote
the center of LG, and the maximal torus of G, respectively.

2. LG/G: the principal bundle T x G — LG — QG, where QG is the
subgroup of LG whose element y satisfies that y(1) = e where 1 € S1, and e is
the unit element of G. In fact, 2G = LG/G.

2.2.1. The principal bundle n : LG — LG/T. By the structure of the Lie
algebra LG of LG, it follows directly that the principal bundle Tx T — LG —
LG/T satisfies the conditions supposed in proposition 1.1 and corollary 1.2.
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Then this principal bundle 7 : LG — LG/T can be equipped with the structures
of the connection a, and generalized Kostant mapping d.¢,7-

If 4 is a weight of LG [9], then we can induce a complex line bundle C —
L; — LG/T on LG/T from this principal bundle, and impose the induced
connection and induced Kostant mapping on the complex line bundle. Thus
we regard L, as a generalized prequantization line bundle on LG/T. Moreover,
by the general theory of Pressley and Segal [10], the fundamental homoge-
neous space LG/T can be identified with a homogeneous complex manifold
LGec/B* Gg, where Bt G¢ consists of the boundary values of holomorphic maps

y:{z:lz] < 1} — G¢

such that y(0) belongs to the Borel subgroup B+ of G¢ corresponding to the
positive roots of Gc¢.

As in the case of compact groups, we choose the polarization P determined
by the Lie subalgebra N*Gc of LG, which consists of the boundary values of
holomorphic maps

E{z:]z| < 1} — G¢
such that £(0) belongs to the nilpotent Lie subalgebra N+ of G¢ corresponding
to the positive roots of G¢. By the complex structure of LG/ T, it follows that the
polarization space

I (L) € (Fel(Ly) |V, F(2) =0 forally € LG,

and all tangent vectors X (n(y)) € P(n(y))}

is just the holomorphic section space I} of the holomorphic line bundle L; on
the homogeneous complex manifold LG/T (= LG¢/B*Gc). Being similar
to compact groups, the Borel-Weil theorem for loop groups [10] completely
describes the space I3.

Theorem 2.2 (Borel-Weil theorem for loop groups [10]).

(1) The holomorphic line bundle L; on the homogeneous complex manifold
LG/|T possesses non-vanishing holomorphic sections if and only if the weight A of
LG is antidominant.

(2) If the representation I is nonzero, then the representation is:

(i) of positive energy,

(ii) of finite type,

(iii) essentially unitary, and

(iv) irreducible, with lowest weight A.

Remark. The Borel-Weil theorem of loop groups and induced Kostant mapping
also identify the induced representation of LG on I} with the generalized geo-
metric quantization of its infinite dimensional homogeneous complex manifold
LG/T = LGe/B* Ge.
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2.2.2. The principal bundle n : LG — LG/G(= QG). The Wess-Zumino-
Witten model with the gauge group G plays an important role in two dimensional
conformal field theory [2, 4, 16]. Following from the discussions in refs. [11]
and [16], the classical phase space of the WZW model is 2 G x QG. Since the left
copy and the right copy of QG in this classical phase space are homeomorphic,
it is enough to investigate the geometric quantization of 2G. Moreover, the
geometric quantization of the classical phase space QG x QG is just the direct
sum of the geometric quantizations of the two copies of QG [16].

With the above arguments, it is natural to take the principal bundle T x G —
LG — QG as the starting point of the geometric quantization of 2G. It follows
that this principal bundle satisfies the conditions (1.2), (1.9), and (1.10). By
proposition 1.1, we obtain an Ehresmann connection and generalized Kostant
mappings.

If A = (0, 4, &) is an antidominant weight of LG [10], where the level # (a
positive integer) is the character of the center T of LG, then A is an antidominant
weight of G. By theorem 2.1 (Borel-Weil theorem for compact groups), there
exists one and only one irreducible unitary representation (V;, p;) with the
lowest weight A, where the representation space V; is the holomorphic section
space I, of the induced holomorphicline bundle L; on the homogeneous complex
manifold G/T. With 4, and the irreducible representation (V;, p;) of G, the
complex vector bundle V;, — E A(’) — QG can be induced from the principal
bundle T x G — LG — QG. Then we can also impose the structures of the
induced connection and induced generalized Kostant mappings on this complex
vector bundle. Thus we regard the complex vector bundle E A(') equipped with
the structures stated above as the prequantization vector bundle of QG.

In order to obtain the polarization of the prequantization vector bundle of
QG, we first briefly investigate the structure of the homogeneous space QG =
LG/G. As we know from ref. [10], £G can be identified with a homogeneous
complex manifold LGe/L* Ge, where L+ G¢ consists of the boundary values of
the holomorphic maps

yi{z:|z] < 1} — Ge.

Moreover, QG is a Kihler manifold whose Kéhler form is just the basic two-
cocycle w of LG [9].
Now we choose the polarization P of QG as

P(r()) € {7 (L,(&)) | &€ LFGc) (2.5)

for all y € LG, where the Lie subalgebra LJ Gc of LG¢ consists of the boundary
values of holomorphic maps

i {z:|z|< 1} — G¢
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such that £(0) = 0. The polarization space is defined as

TP E)E (Fel(E") |V 0, F() =0 forall

. (2.6
y € LG, and all tangent vectors X (n(y)) € P(n(y))}, )

where I' (E ;r) ) denotes the smooth section space of the vector bundle £, which
can be identified with the following subspace of C (LG, V;):

F(E") = {FeC=(G, V)|

F(yty = )-Sl)”lF(V), F(yg) = pi(g).7'F(p) (2.7)
forall y € LG, allt € T, and all g € G}.

Lemma 2.3 (The explicit form of FOP(E;’))). Suppose that A(= (0, 4, h)) is an
antidominant weight of LG. Let (V;, p;) be the irreducible unitary representation
of G¢ induced by the antidominant weight A of G in theorem 2.1. We extend p;
as the homomorphism p; from L* Gg x C* to Hom(Vy, V), which satisfies

Pilere =1, palex =h, pilee = pas (2.8)

where C* denotes the complexification of the center T of LG,and the subgroup
LT Ge of LG¢ consists of the boundary of the holomorphic maps

yi{z:|z] < 1} — G¢

such that y(0) = e € G.
We define E; as the induced holomorphic vector bundle from the complex prin-
cipal bundle

L+¥Ge xC* — LGe — QG(= LGe/L* Ge)
by the extended homomorphism p; : L*Ge x C* — Hom(V;, ;).
Then the polarization space I} (E ;’) ) of the prequantization vector bundle E ;’)

is just the holomorphic section space I (E;) of the holomorphic vector bundle
Vi— E; — QG on QG.

Proof.
(1) Since for all F € I[P (E"”), all ¢ € L{ G, and all y € LG, by (2.6),

d
0= Vo F)@) = L(FY@) = g F (exptdi—o,

it follows that F (yb) = F(y) forall b € L;f Gc. This implies that F € I (E3),
ie., [P (E") C o (Ey).

(2) By the complex structure of G, and the definition of the polarization
space IF (E{”) in (2.6), it follows directly that I} (E1) € IiF (E\").

It follows from (1) and (2) above that the identity Ii¥ (E") = Lo (E;)
holds. 0
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Remark. Lemma 2.3 shows that generalized geometric quantization space of QG
is the holomorphic section space I}, (E;) of the holomorphic vector bundle E;
of QG. The question whether I (E)) is non-zero or not needs to be answered.
The positive answer to this question is similar to the Borel-Weil theorem for
loop groups (theorem 2.2).

Lemma 2.4 (The model space of G [5, 7, 11]). Suppose that G is a compact
semisimple Lie group. We define the model space A of G as the homogeneous
complex manifold Gc/N*, where Nt is the maximal nilpotent subgroup of G
corresponding to the positive root vectors of the complexified Lie algebra G of G.
Then the holomorphic function space Hol (A) of A as the representation space of
G can be decomposed into the direct sum of the irreducible representation spaces
of G in which each irreducible representation appears once and only once.

Proof. Let T be the maximal torus of G. Since TNt = N*T, T has the right
actions on the model space A of G. It follows that the right actions of T on
A commute with the left actions of G on A. Since T is abelian, Hol(A) can
be decomposed into the direct sum €, H,, where H; denotes the weight space
corresponding to the character A of 7. In particular, H; is invariant under the
induced actions of G on Hol(A).

In fact, H) is just the holomorphic section space {; of the induced holomor-
phic line bundle L; of G/T. By theorem 2.1 (Borel-Weil theorem for compact
groups), H, is the irreducible representation space of G' with 4 as the lowest
weight. It is obvious that I} C Hol(A) for each antidominant weight 4 of G.
Thus each irreducible representation appears once and only once in the direct
sum decomposition of Hol (A). O

Remark.

(1) Lemma 2.4 states that all irreducible representations of G can be naturally
combined into the holomorphic function space Hol(A) of the model space A.
This is just the reason why the homogeneous complex manifold A(=9f G- /N+)
1s called the model space of G.

(2) This lemma is quite different from the Peter—-Weyl theorem. The Peter—
Weyl theorem shows that L2(G) (the square integrable function space of G)
as the representation space of G' can be decomposed into the direct sum of the
irreducible representation spaces of G, and each irreducible representation V)
appears (dim V) times. The Peter—Weyl theorem for compact groups cannot be
generalized to the case of infinite dimensional Lie groups.

Theorem 2.5.If A(= (0, A, h)) is the antidominant weight of LG, then there
exists a linear isomorphism

(0 : I} - ILO[(El)a
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where I} denotes the holomorphic section space of the holomorphic line bundle
L; on LG/T in theorem 2.2. Moreover, I, (E;) is the irreducible representation
of LG with the lowest weight A.

Proof. In the proof of lemma 2.2, the space

Hy = { f € Hol(Ge/N*) | f([gt]) = A()7'f (1g]) (2.9)
forall g € G, and all t € T¢} )

is just the holomorphic section space I; of the holomorphic line bundle L; on
G/T in theorem 2.1. Thus we take H; as V; in lemma 2.3. It also follows directly
that the following identities hold:

I; = { f €Hol(LGc/N*Ge) | f (7)) = A7 f([yD (2.10)
forall y € LG, and all t € Tg x C*}, )

La(E) = {fe HOl(;Gc/LfLGc, V)1 f(lygl) = pa(g). 7L (Iy])
forall y € LGc, and all g € Gc x C*}
= { f € Hol(LGe/L} Ge, Hol(Ge/N+)) |

fvel, &' = fr], [gg']).

], [g) =407 fF(Iy), [g])

forall y e LGg, all g,8’ € G¢, and all £ € Tz x C*}.

(2.11)
We define the linear map

o: 1 — La(Ey), fr—oe(f),
p(f)(y], [g]D) &f f(lygl) forally e LGc, all g € Ge.  (2.12)

By the identities (2.10) and (2.11), it implies that ¢ is a linear isomorphism.
Since 4 is an antidominant weight of LG, it follows from theorem 2.2 that I} is
the irreducible representation of LG with the lowest weight A. Thus I}, (E;) is
also the irreducible representation of LG with the lowest weight 4 of LG. O

Remark. The induced irreducible representation of LG on I (E;) coincides
with the generalized geometric quantization of 2G by theorem 2.5, and induced
Kostant mappings.

Theorem 2.6 (The model spaces of LG [11]). We define two spaces A, and A,
of LG as

A Y LGe/N*Ge, A Y LGe/Lf Ge, (2.13)

respectively. Then:

(1) the holomorphic function space Hol(A,) of A, can be decomposed into
the direct sum of the irreducible representations of LG in which each irreducible
representation appears once and only once.
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(2) We define a linear space as

Ha, € {Hol(LGc/L} Ge, Hol(Ge/N*+)) | £([78], [¢']) = £ ([7], [g&'])

forall y € LG, all g, g’ € G¢}.
(2.14)
Then there exists a linear isomorphism ¢ : Hol(A;) — H 4,, which is defined in
(2.12). Moreover, H 4, can be decomposed into the direct sum of the irreducible
representations of LG in which each irreducible representation appears only once.

Proof.
(1) Similar to the proof of lemma 2.4, it follows directly from theorem 2.2
(Borel-Weil theorem for loop groups) that the statement about Hol (A, ) is true.
(2) Bylemma 2.4, Hol(G¢/Nt) = @, V), where V) is the irreducible represen-
tation of G with the lowest weight A of G, and A runs over the set of antidominant
weights of G. Since the following identity

Fyeh = p@).~ fUyD (2.15)

holds for all f € H4,,all y € LGe, and all g € G¢, where p is the representation
of G¢ on Hol(G¢/N*) induced by the left actions of Ge on G¢/N*, the space

H 4, can be decomposed into the direct sum lefz), where

H3) = (/€ Hol(LGe/Li Ge, ¥3) |/ (Irg]) = pa().7' (7] (5 44
for all y € LG, and all g € Gc} '

and A runs over all antidominant weights of G.
By the fact that the center T of LG commutes with L} Gc, the center T has

right actions on the model space A, = LGe/L} Ge. Thus the space Hf‘fz) under

the right actions of T can be decomposed into the direct sum @,{Hﬁfz’ " where

the positive integer 4 is the character of T, and Hf‘fz’ ) s the corresponding

characteristic space of T. In fact, the space Hfj; ") can be identified with the

holomorphic section space I}, ( Ej ) of the holomorphic vector bundle E; defined
in lemma 2.3 by the weight 4 of LG. By theorem 2.5, 'Hf‘f; ") is nonzero if and
only if 4 is an antidominant weight. And on the other hand, if A(= (0, 4, &))
1s an antidominant weight, then it is easy to see that

La(Ey) = HE P cHY) € Ha,

2

Thus H 4, can be decomposed into the direct sum of the irreducible representa-
tions of LG in which each irreducible representation appears only once.

By the definition of ¢ in (2.15), it follows that ¢ is a linear isomorphism.
Moreover, the statement about H 4, in theorem 2.6(2) can also be proved by
theorem 2.6 (1) through the linear isomorphism ¢. O



138 M. Guo et al. / Generalized prequantization on principal bundles

Remark. Theorem 2.6 shows that the model spaces .4; and .4, both can combine
the irreducible representations of LG into a global structure such as Hol(.A4;)
and ‘H Ap-
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